4,920 research outputs found

    Bound States in the Continuum Realized in the One-Dimensional Two-Particle Hubbard Model with an Impurity

    Full text link
    We report a bound state of the one-dimensional two-particle (bosonic or fermionic) Hubbard model with an impurity potential. This state has the Bethe-ansatz form, although the model is nonintegrable. Moreover, for a wide region in parameter space, its energy is located in the continuum band. A remarkable advantage of this state with respect to similar states in other systems is the simple analytical form of the wave function and eigenvalue. This state can be tuned in and out of the continuum continuously.Comment: A semi-exactly solvable model (half of the eigenstates are in the Bethe form

    Testate amoebae as a proxy for reconstructing Holocene water table dynamics in southern Patagonian peat bogs

    Get PDF
    Funded by Natural Environment Research Council. Grant Numbers: NE/I022809/1, NE/I022981/1, NE/I022833/1, NE/I023104/1 Ricardo Muza and the Wildlife Conservation Society Karukinka Park Acknowledgements This work was supported by the Natural Environment Research Council (grant numbers NE/I022809/1, NE/I022981/1, NE/I022833/1 and NE/I023104/1). We thank Ricardo Muza and the Wildlife Conservation Society (WCS) Karukinka Park rangers for facilitating access to Karukinka Park. We also thank François De Vleeschouwer, Gaël Le Roux, Heleen Vanneste, Sébastien Bertrand, Zakaria Ghazoui and Jean-Yves De Vleeschouwer for fieldwork assistance. Nelson Bahamonde (INIA, Punta Arenas, Chile) and Ernesto Teneb (UMag, Punta Arenas, Chile) provided logistical support for the fieldwork in Chile. Dr Andrea Coronato (CADIC, Ushuaia) kindly provided logistical support for the research in Argentina. Thanks to Jenny Johnston for cartography, David Jolley for assistance in microscopic photography and Audrey Innes for laboratory assistance. We highly appreciate reviews by Matt Amesbury and an anonymous reviewer. R.P. is supported by an Impact Fellowship from the University of Stirling.Peer reviewedPublisher PD

    The effect of unfiltered coffee on potential biomarkers for colonic cancer risk in healthy volunteers: a randomized trial

    Get PDF
    Background: Epidemiologic studies suggest that coffee use might protect against colorectal cancer. Inconsistencies as to the effect of coffee use and colorectal cancer between epidemiologic studies might be related to the type of coffee brew. Objective: We studied the effect of unfiltered coffee consumption on putative biomarkers for colonic cancer risk. Design: A total of 64 healthy volunteers (31 men and 33 women), with a mean age of 43 ± 11 years were randomly assigned to two groups in a crossover design, with two intervention periods of 2 weeks separated by a washout period of 8 weeks. Treatments were 1 L of cafetiere (French press) coffee daily or no coffee. At the end of each intervention period, fasting blood samples, colorectal biopsies and 48 h faeces were collected. Results: No effect of coffee on colorectal cell proliferation, assayed by estimating the Proliferating Cell Nuclear Antigen labelling index, was seen. Additionally, no effects were seen on the concentrations of faecal soluble bile acids and colorectal mucosal glutathione S-transferase activity. However, unfiltered coffee significantly increased the glutathione content in the colorectal mucosa by 8% and in plasma by 15%. Other aminothiols in plasma also increased on coffee. Conclusion: Unfiltered coffee does not influence the colorectal mucosal proliferation rate, but might increase the detoxification capacity and anti-mutagenic properties in the colorectal mucosa through an increase in glutathione concentration. Whether this effect indeed contributes to a lower colon cancer risk remains to be established

    High dissimilarity within a multiyear annual record of pollen assemblages from a North American tallgrass prairie

    Get PDF
    Citation: Commerford, J. L., McLauchlan, K. K., & Minckley, T. A. (2016). High dissimilarity within a multiyear annual record of pollen assemblages from a North American tallgrass prairie. Ecology and Evolution, 6(15), 5273-5289. doi:10.1002/ece3.2259Grassland vegetation varies in composition across North America and has been historically influenced by multiple biotic and abiotic drivers, including fire, herbivory, and topography. Yet, the amount of temporal and spatial variability exhibited among grassland pollen assemblages, and the influence of these biotic and abiotic drivers on pollen assemblage composition and diversity has been relatively understudied. Here, we examine 4 years of modern pollen assemblages collected from a series of 28 traps at the Konza Prairie Long-Term Ecological Research Area in the Flint Hills of Kansas, with the aim of evaluating the influence of these drivers, as well as quantifying the amount of spatial and temporal variability in the pollen signatures of the tallgrass prairie biome. We include all terrestrial pollen taxa in our analyses while calculating four summative metrics of pollen diversity and composition -beta-diversity, Shannon index, nonarboreal pollen percentage, and Ambrosia: Artemisia -and find different roles of fire, herbivory, and topography variables in relation to these pollen metrics. In addition, we find significant annual differences in the means of three of these metrics, particularly the year 2013 which experienced high precipitation relative to the other 3 years of data. To quantify spatial and temporal dissimilarity among the samples over the 4-year study, we calculate pairwise squared-chord distances (SCD). The SCD values indicate higher compositional dissimilarity across the traps (0.38 mean) among all years than within a single trap from year to year (0.31 mean), suggesting that grassland vegetation can have different pollen signatures across finely sampled space and time, and emphasizing the need for additional long-term annual monitoring of grassland pollen

    Pictorial essay. Pathology of the thymus on CT-imaging.

    Get PDF
    A number of masses arise in relation to the thymus. The radiologist has an important role regarding the differential diagnosis between non-tumoral thymic pathology and malignant thymic tumors. In general, a benign hyperplasia of the thymus occurs in children and young adults, while in adults the thymoma is the most common tumor. Furthermore imaging is of great importance in the preoperative staging and oncological follow-up. To evaluate the thymus CT scan is used in the majority of the cases. MRI or PET-CT can have an added value in the differential diagnosis of various thymic pathologies in some cases. We present an overview of thymic masses with typically imaging features: thymic hyperplasia, thymomas, thymic carcinoma, thymic non-hodgkin lymphoma, thymolipoma and thymic carcinoid

    XXZ Bethe states as highest weight vectors of the sl2sl_2 loop algebra at roots of unity

    Full text link
    We show that every regular Bethe ansatz eigenvector of the XXZ spin chain at roots of unity is a highest weight vector of the sl2sl_2 loop algebra, for some restricted sectors with respect to eigenvalues of the total spin operator SZS^Z, and evaluate explicitly the highest weight in terms of the Bethe roots. We also discuss whether a given regular Bethe state in the sectors generates an irreducible representation or not. In fact, we present such a regular Bethe state in the inhomogeneous case that generates a reducible Weyl module. Here, we call a solution of the Bethe ansatz equations which is given by a set of distinct and finite rapidities {\it regular Bethe roots}. We call a nonzero Bethe ansatz eigenvector with regular Bethe roots a {\it regular Bethe state}.Comment: 40pages; revised versio

    Exposure to Organophosphates Reduces the Expression of Neurotrophic Factors in Neonatal Rat Brain Regions: Similarities and Differences in the Effects of Chlorpyrifos and Diazinon on the Fibroblast Growth Factor Superfamily

    Get PDF
    BACKGROUND: The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. OBJECTIVES: We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1-4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 mg/kg/day diazinon. METHODS: Using microarrays, we then examined the regional expression of mRNAs encoding the FGFs and their receptors (FGFRs) in the forebrain and brain stem. RESULTS: Chlorpyrifios and diazinon both markedly suppressed fgf20 expression in the forebrain and fgf2 in the brain stem, while elevating brain stem fgfr4 and evoking a small deficit in brain stem fgfr22. However, they differed in that the effects on fgf2 and f4 were significantly larger for diazinon, and the two agents also showed dissimilar, smaller effects on fgf11, fgf14, and fgfr1. CONCLUSIONS: The fact that there are similarities but also notable disparities in the responses to chlorpyrifos and diazinon, and that robust effects were seen even at doses that do not inhibit cholinesterase, supports the idea that organophosphates differ in their propensity to elicit developmental neurotoyicity, unrelated to their anticholinesterase activity. Effects on neurotrophic factors provide a mechanistic link between organophosphate injury to developing neurons and the eventual, adverse neurodevelopmental outcome

    Tracing of temporo-entorhinal connections in the human brain: cognitively impaired argyrophilic grain disease cases show dendritic alterations but no axonal disconnection of temporo-entorhinal association neurons

    Get PDF
    Argyrophilic grain disease (AGD), a neurodegenerative disorder, is often associated with mild to moderate Alzheimer’s disease (AD)-related pathology. The development of dementia in AGD is associated with the extent of coexisting AD-related pathology. Therefore, the question arises whether the degenerative changes in the neuronal network of demented AGD-patients represent a distinct pattern or show similar changes of disconnection as considered for AD. We were able to apply DiI-tracing in two human autopsy cases with mild AD-related pathology (controls), in one AD-patient, in one non-demented patient with advanced AD-related pathology, and in three cognitively impaired AGD-patients. DiI-crystals were injected into the entorhinal cortex. Pyramidal neurons of layers III and V of the adjacent temporal neocortex (area 35) were retrogradely marked with the tracer and analyzed. The AD case did not exhibit any retrogradely labeled neurons in the temporal neocortex. In the non-demented case with advanced AD-related pathology, the number of traced neurons was reduced as compared to that in the two controls and in the three AGD cases. In contrast, all three cognitively impaired AGD cases exhibited labeled pyramidal neurons in area 35 in an almost similar number as in the controls. However, alterations in the dendritic tree were observed in the AGD cases. These results show the existence of temporo-entorhinal connections in the adult human brain similar to those reported in animal models. Furthermore, the present study based on seven cases is the first attempt to study changes in the neuronal network in a human tauopathy with targeted axonal tracing techniques. Our findings in three cognitively impaired AGD cases suggest that AGD-related dementia constitutes a distinct disorder with a characteristic pattern of degeneration in the neuronal network

    Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study

    Get PDF
    Although often clinically indistinguishable in the early stages, Parkinson's disease (PD), Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS) was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI) data to compare differences in fractional anisotropy (FA) and mean diffusivity (MD) between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients with PD

    Quantum superalgebras at roots of unity and non-abelian symmetries of integrable models

    Full text link
    We consider integrable vertex models whose Boltzmann weights (R-matrices) are trigonometric solutions to the graded Yang-Baxter equation. As is well known the latter can be generically constructed from quantum affine superalgebras Uq(g^)U_{q}(\hat g). These algebras do not form a symmetry algebra of the model for generic values of the deformation parameter qq when periodic boundary conditions are imposed. If qq is evaluated at a root of unity we demonstrate that in certain commensurate sectors one can construct non-abelian subalgebras which are translation invariant and supercommute with the transfer matrix and therefore with all charges of the model. In the line of argument we introduce the restricted quantum superalgebra Uqres(g^)U^{res}_q(\hat g) and investigate its root of unity limit. We prove several new formulas involving supercommutators of arbitrary powers of the Chevalley-Serre generators and derive higher order quantum Serre relations as well as an analogue of Lustzig's quantum Frobenius theorem for superalgebras.Comment: 31 pages, tcilatex (minor typos corrected
    corecore